Interfacial Layer Effect on Novel p-Ni1-xO:Li/n-Si Heterojunction Solar Cells

نویسندگان

  • Feng-Hao Hsu
  • Cheng-Fu Yang
چکیده

This study fabricates p-type Ni1−xO:Li/n-Si heterojunction solar cells (P/n HJSCs) by using radio frequency (RF) magnetron sputtering and investigates the effect of substrate temperature on photovoltaic cell properties. Grazing incidence x-ray diffraction, four point probe, and ultraviolet-visible-near infrared discover the optoelectrical properties of p-Ni1-xO thin films. The results show that p-Ni1-xO thin films deposited at 300 C has the highest grain size (22.4 nm), average visible transmittance (~42%), and electrical resistivity (2.7 Ωcm). However, the conversion efficiency of cell is shown only 2.33% which is lower than the cell (3.39%) fabricated at room temperature. This result can be mainly attributed to interfacial layer thickness (SiOx) reduces from 2.35 nm to 1.70 nm, as verified by high-resolution transmission electron microscopy. Keywords— Heterojunction, nickel oxide, solar cells, sputtering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction

Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...

متن کامل

Novel high-efficiency crystalline-silicon-based compound heterojunction solar cells: HCT (heterojunction with compound thin-layer).

With an amorphous silicon (a-Si:H)/crystalline silicon (c-Si) heterojunction structure, the heterojunction with intrinsic thin-layer (HIT) solar cell has become one of the most promising technologies for c-Si based solar cells. By replacing a-Si:H thin films with appropriate compound semiconductors, we propose novel heterojunction structures which allow c-Si heterojunction solar cells to posses...

متن کامل

Simulation and Fabrication of Heterojunction Silicon Solar Cells from Numerical Computer and Hot-Wire CVD

In this paper, we will present a Pc1D numerical simulation for heterojunction (HJ) silicon solar cells, and discuss their possibilities and limitations. By means of modeling and numerical computer simulation, the influence of emitter-layer/intrinsic-layer/crystalline-Si heterostructures with different thickness and crystallinity on the solar cell performance is investigated and compared with ho...

متن کامل

Simple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction

Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...

متن کامل

a-Si/c-Si1-xGex/c-Si Heterojunction Solar Cells

The performance and material quality requirements of thin film a-Si/c-Si1-xGex/Si heterojunction solar cells are investigated by modeling and simulation. The effects of Ge content, Si1-xGex thickness, Si1-xGex lifetime and a-Si/c-Si1-xGex interfacial quality have been studied. The simulations predict that Si1-xGex based thin film solar cells provide a significant increase in solar cell output c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014